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Abstract

In this paper it will be shown how the method of
lines can be adapted to the analysis of microstrip
filters. The filters consist of a dielectric lossy res-
onator of arbitrary shape excited by a microstrip
line. Field distributions and scattering parame-
ters will be presented.

1 Introduction

Although the structure of microstrip filters is
very simple — a dielectric or metallic resonator is
positioned beside a microstrip line — threedimen-
sional analysis methods are necessary in order to
simulate their electromagnetic behavior. Possi-
ble methods are mode-matching methods [1], fi-
nite element methods [2], finite difference meth-
ods {3] or the method of lines [4]. An overview
of most of these methods can be found in [5].
For electrodynamic problems the method of
lines is a powerful tool for the analysis of mul-
tilayered structures. In every layer the permit-
tivity may vary in two dimensions. In these two
dimensions the method of lines works like a fi-
nite difference method. In the third dimension
the solution is found analytically. Because of
this semi-analytical property good results can be
achieved with the method of lines even when only
a few discretization lines are used. The interface
conditions between different media are optimally
fulfilled even if there are large variations in the
permittivity [6] so that not only dielectric res-
onators can be analyzed but also lossy metallic
resonators with great imaginary permittivities.
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For the investigation of dielectric resonator fil-
ters it was necessary to combine several exten-
sions of the method of lines which have never
been used together or have never been used be-
fore for high frequency applications. The incom-
ing and transmitted waves are modelled by in-
homogenous [7] and special absorbing boundary
conditions. The inhomogenous media make it
necessary to discretize and solve a system of cou-
pled Sturm-Liouville differential equations simul-
tanously. So far this has been used in a similar
way only in method of lines based beam propa-
gation algorithms [8].

2 Theory

Most dielectric resonators are cylinders with con-
stant cross-sections. Therefore the microstrip fil-
ters can be described by a model of three or more
layers. The first layer is the space above the res-
onator. The second layer is inhomogenous and
contains the resonator and the remaining lay-
ers represent the multilayered substrate. Fig. 1
shows such a structure. In every layer the elec-
tromagnetic field can be derived from a vector
potential A. It is important that the potential

Figure 1: Principle design of a dielectric resonator filter
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has the same vector components as the gradient
of the permittivity of the material ¢,.

A=Az e+ Ay ey (1)
Only this general solution leads to a consistent
system of coupled differential equations for the
potential components A, and A,. A similar solu-
tion was presented by [9] for one dimensional per-
mittivity variations. The extension for two di-
mensional permittivity variations was first used
for the investigation of integrated optical struc-
tures [8]. The layers of the structure are dis-
cretized in the x and the y-direction. There-
fore the discretization of the system of differen-
tial equations leads to a set of coupled ordinary
differential equations

0% . ..
—a?A - QA =BA (2)
The vector A contains the discretized poten-
tial components A, and Ay on the discretization
lines. The exitation vector Ay contains the po-
tential at the input of the filter. At the output
of the filter an outgoing fundamental mode is as-
sumed which leads to special absorbing boundary
conditions that are directly used in the difference
operators. Transforming eqn. (2) to main axis

gives a system of uncoupled differential equations

0% . .g. A
a—zz,_A_—sz—‘—_B__A_o (3)
with ) . .
B-ion A-1TA @

From the solution of eqn. (3) a relation between
the potential and its derivatives with respect to
z at the top and the bottom of a layer can be
derived. The linear equation system

Vi + YoBo = —Zodr (5)
is obtained by transforming the potential back
to the spacial domain and matching the fields at
the interfaces between the layers. K, contains
the discretized tangential electric field, Eq; the
exciting tangential electric field and Jr the dis-
cretized surface current at the interfaces. From
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eqn. (5) the electric field beside the metallization
and the surface current on the metallization can
be computed.

It is also possible to investigate isolated res-
onators with the presented algorithm. The com-
putational window has to be surrounded with ab-
sorbing boundaries [10]. Eqn. (5) changes to

Y(f) B =0 (6)

The system matrix Y is a function of the fre-
quency f. The system equation has non-trivial
solutions if det(Y) disappears. Therefore the res-
onance frequencies are the zeroes of det(Y).

3 Results

A metallic resonator with finite thickness which
is excited by a microstrip line was chosen as an
example for a dielectric resonator filter. Its finite
conductence is modelled by a large imaginary
permittivity. Fig. 2 shows the analyzed struc-
ture. Very few discretization lines were used for
the analysis. Fig. 3 and fig. 4 show the computed

Figure 2: Lossy metallic resonator excited by a mi-
crostrip line, di = 150pum, dy = 30pum, w; = 150pm,
we = 128.6pum, wz = 75um, I = 2.556mm, €,1 = 12.9,
er2 = —j1/pcuweo

run of the transmission coefficient of the filter.
At the resonance frequencies the absolute value
of Sy; decreases and the phase changes abruptly.
In order to verify the applied method an isolated
dielectric resonator with circular shape was ana-
lyzed which is well known from other publica-
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Figure 3: |S2;| of the lossy metallic resonator filter in

fig. 2 with 15 x 33 discretization lines for one component

of the potential
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Figure 4: Phase of Sa; of the lossy metallic resonator

filter in fig. 2 with 15 x 33 discretization lines for one

component of the potential

koa | Q-factor
our Method | 0.537 | 40.9
Theory [11] | 0.537 | 43.73
Theory [12] | 0.531 | 45.8
Theory [13] | 0.534 | 40.8
Theory [14] | 0.535 | 47

Measured [15] | 0.533 | 46.4

Table 1: Comparison of resonance frequency and quality
factor due to radiation of the T'Ey; 5;-mode of a cylindri-
cal resonator with the results of other authors. ¢, = 38,
height=6.4 mm, diameter a=10.5 mm
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Figure 5: Discretization of the resonator with cylindrical
cross section

Figure 6: Real part of the normal magnetic field in the
middle of the dielectric resonator

tions [11] [12] [13] [14] [15]. The approximation
of the circular shape in the computation window
is shown in fig. 5. We have calculated the res-
onance frequency and the quality factor due to
radiation of the T'Egs-mode of this resonator.
The normal magnetic field in the middle of the
resonator is shown in fig. 6. In table 1 our results
are compared with those of other authors. They



are in good consistency.

4 Conclusion

We have shown how to analyze microstrip lines
with dielectric discontinuities by means of the
full hybrid method of lines. A first result is pre-
sented. Results for isolated resonators are in
good consistency with other publications. In the
future we will compute more accurate scattering
parameters for dielectric resonator filters in order
to compare our method with other methods.
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